


Time Dilation

The basic idea of time dilation is usually described by saying something
like “clocks slow down” when your velocity approaches the speed of light.
That’s kind of true, but it’s also kind of not true. That facile explanation can
lead to lots of confusion. More on that in a bit.

Let’s start with the fact that time dilation is an undeniable feature of the
universe, one that we use every day without realizing it. GPS systems have
to correct for the time dilation caused by the relative motion of satellites and
points on earth. Both the satellite sending signals and the receiver on earth
are in motion. We’ll see an example of this in a thought experiment at the end
of this essay. The satellite and the earth-bound reciever are moving relative
to each other due to the satellite’s orbital velocity; that relative difference is
what creates the time dilation. If the software didn’t correct for that dilation,
GPS systems would be off by many yards instead of a few feet.

The point is that time dilation is a part of our everyday life, even if we
didn’t know it until now.

What the Math Says.

The basic equation for time dilation, known as the Lorentz Equation, is
as simple as the more famous E = mc2. It’s usually written something like
this:

tm = γts

Of course, that’s not useful unless you know what the letters stand for:

tm =time as measured by the moving observer;

ts =time measured as by the stationary observer;

γ =
1

√

1− v2

c2

= the Lorentz constant; where

v =velocity of the moving observer; and

c =the speed of light
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The denominator of γ is always less than one, so γ is always greater than
one. Thus, tm, time as measured by the observer who is in motion, is always
greater than ts, time as measured by the stationary observer. Thus, the
observer in motion sees a longer duration between events occuring in the
stationary frame than does an observer in the stationary frame. Since time in
this case is understood to be duration, this means that the observed duration
is longer in the moving frame, i.e., that time has slowed down.

Most people think that derivation of the above formula involves deep
mathematics. That’s certainly true in general. However, we’ll do a thought
experiment at the end of this essay to deduce the formula in a special case
using only Euclidian geometry.

Before we do that there is a problem with the above facile description.
It’s not that it’s wrong, but rather that it’s incomplete.

An Example.

The above summary has some missing elements, so that’s where we’ll
turn next.

The first thing that’s missing is what, exactly, are the two observers
measuring? The above summary uses the word “events.” That means that
time, t, in the above equation is actually a measurement of duration. That
generally means that, lurking in the background, are two events separated by
time. That’s in addition to the two observers. The observers are measuring
the duration, from their perspective, of the elapsed time between the two
events. That’s the tm and ts in the equations, the durations that the moving
observer and the stationary observer see.

Everything is moving, so the next thing that’s missing is how we select
the stationary and moving observer. Is it completely arbitrary which is which?

An example might be helpful. Let’s suppose one of our observers is
named, oh, I don’t know, let’s say, Spock, and he’s on the Enterprise. The
other observer might be Sarin, on a different spaceship. Both spaceships are
moving really fast, either toward or away from each other. Do we get to
choose which one is the stationary observer? Well, yes and no. Let’s see what
happens from each perspective.

It’s tempting to think about how fast second hands on clocks might
be moving, but Spock and Sarin can’t see each other’s clocks. What they
could see, though, would be a signal timed to flash every second. Each could
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measure the time between signal blips emitted by the other ship. Since the
time between blips is the duration between two events, that’s the situation
when the Lorentz equation applies to tell us about time dilation. All we have
to do is decide which observer is stationary and which is moving.

The problem is that they are both moving. However, as we shall see, the
choice of which is stationary also depends on what they are observing relative

to where they are.

Logically–Spock is always logical, after all–Spock would be measuring
the time between blips he sees coming from Sarin’s ship. Spock knows that
Sarin’s ship sends the blips in one-second intervals because, well, Spock knows
everything. But when he measures the signal from Sarin’s ship and compares
it to his local clock, he sees the blips seem to be more than one second apart.
That says that time is moving “slower” for Spock than it is for Sarin. That
makes sense: he’s in motion relative to Sarin and that’s what the Lorentz
equation says should happen.

Now reverse things. Sarin is a Vulcan, too, so he knows and does stuff
the same as Spock. So, he looks at signals from the Enterprise, and he sees
those signals coming in more than one second intervals. That says time is
moving slower for Sarin than it is for Spock!

What? That looks like a paradox, but it’s not. It’s because the facile
understanding of time dilation we started with is still incomplete.

What’s Missing.

Let’s go back and look more closely at what Spock is doing. He’s ob-
serving the blips emitted by Sarin’s ship. Sarin’s ship times those blips to
be one second apart. That means there are two measurements going on.
One measurement is on Sarin’s ship, using the timer on his ship. The other
measurement is the one Spock takes, using the clock on his ship.

The events at Sarin’s end–the blips–and the timer creating the blips
aren’t moving with respect to each other–they are stationary with respect
to each other. At Sarin’s end, the “observer” isn’t Sarin; it’s the timer and
the emitter which are in the same frame that’s emitting the blips. That
frame is stationary with respect to the events and provides a rest state for
measuring the interval between the blips. That makes the frame at Sarin’s
end the stationary frame, and the frame that Spock is in the moving frame.

When Spock takes his measurements, he’s the one that’s moving with
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respect to the timer and the blips that are both in the stationary frame.
Thus, he’s the moving observer, and he sees the blips take longer than one
second, just as the equation predicts.

Sarin, on the other hand, isn’t observing his blips. He’s observing the
ones on the Enterprise. His observations exactly mirror those of Spock, except
that two of them are observing different things. Sarin also sees blips that take
longer than one second, but he’s looking at the blips emitted by the Enterprise,
not at the blips right next to him.

There’s no paradox because they are observing different things.

So, what’s missing in the above supposed paradox is the location of the

observed event. What’s implicit in the Lorentz equation is a stationary frame–
or rest frame–that includes both the event and a time keeper. It’s the crucial
feature that’s omitted from the facile understanding of time dilation that we
started with.

The comparison of durations that the basic Lorentz equation gives is
always between an observer who is in motion against this stationary or rest
frame, the one that includes both the events being observed and an observer

measuring time. So, there’s no paradox after all.

It can get more complicated, of course.

Complications.

At this point, it kind of looks like the time dilation thing is just a matter
of perspective. Yet, we know it’s real. It’s not just the GPS satellites–there’s
even deeper evidence from things like muon decay. But, still, how do we
decide which time frame is stationary and which isn’t?

The issue came up in a story I recently read. The characters were on a
ship moving at close to lightspeed away from Earth, and one of the characters
said, “Earth moves more slowly than we do, so time there goes by faster.”
Uh, well, that’s not quite right, is it? The equation gives us the time dilation
between a moving object and the rest frame, which may–or may not–be itself
in motion. The rest frame contains both the events being observed and the
measurement of duration between those events; the events and the observer
taking the events are stationary with respect to each other. If they are moving,
they are moving together.

Another complication arises when two observers moving at different rates
come back together. Those observers will have traced out different paths
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through spacetime, via different patterns of acceleration and deceleration.
How those paths and the relative “ages” of the observers work out will depend
on this more complex, four-demensional problem and is beyond the scope of
this short essay.

However, in some cases it’s possible to figure things out. In 1956, Robert
Heinlein wrote Time for the Stars, a novel about two identical twins. One
stayed on Earth and the other went on a spaceship to the stars. The star-
faring ship traveled at speeds nearing the speed of light. The plot thickens
when the star-faring twin returns to Earth, having aged a couple of years, and
finds his twin has aged over sixty years. Is that really how it would work?

Consider the space-faring twin and ignore ticking clocks. That twin has
aged two years between the time he left Earth and returned. His body is his
clock.

But the stay-at-home twin? He’s been on Earth the whole time. More-
over, the events in question, the departure and return of the ship, happen
on Earth. So the stationary frame has to be the stay-at-home twin’s frame.
Thus, the Lorentz equation asserts that one second of time, as measured by
the space-faring twin, is longer than one second of time as measured by the
stay-at-home twin.

This means, for example, each year the star-faring twin spends at 90%
of the speed of light corresponds to 2.3 years for the stay-at-home twin. Each
month at 99.9% of the speed of light corresponds to about 1.9 years for the
stay-at-home twin. If the star-faring twin traveled one month at 99.999% of
the speed of light, it would correspond to over eighteen years for the stay-at-
home twin.

So, yes, the twins having different physical ages fits with the Lorentz
equation. The faster the space-faring twin goes, the more time slows down
for him.

Notice that no matter how much the space-faring twin’s ship accelerates,
it can’t get to the speed of light. Every time it accelerates, time slows in the
ship’s frame. It can never catch up with a light beam.

A Thought Experiment.

We claimed above that we could deduce a special case of the Lorentz
equation using a thought experiment. So, here goes.

Let’s start by imagining an astronaut in orbit above the Earth. The
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astronaut has a device that consists of an emitter that sends out a beam of a
light at a mirror and a receiver that senses when the reflected beam returns.
She also has an extremely sensitive timer that measures the duration between
sending the beam and receiving the reflection. The astronaut, the emitter, the
receiver, and the timer are all moving together in orbit so they are stationary

with respect to each other.

According the Lorentz equation, any other observer looking at this closed
system will measure a longer duration between emission and receipt than the
Astronaut. Let’s see if we can figure out why.

Our astronaut will observe how long it takes for a photon to go from the
emitter to the mirror and back again to the receiver. If the distance to the
mirror is D, then the photon travels twice that distance, 2D, to get there and
back. But distance equals rate times time, so we know how long it takes for
the photon to do that! The time t that it takes can be deduced from

2D = rt = ct

where c is the speed of light. From this, we can deduce that the time the
Astronaut measures, call it ∆τ , must satisfy the equation

2D = c∆τ (1)

Now imagine an observer on Earth looking at the astronaut and her
emitter and receiver. The earth observer is outside of the stationary frame.
In fact, the relative motion between the earth observer and astronaut is due to
the astronaut’s orbital velocity v. So, what happens when the Earth observer

looks at the emitter and reciever?

For the astronaut, the photon follows a straight-line path of length D to
the mirror and back because, from the astronaut’s perspective, the emitter
and receiver haven’t moved.

But things are different for the Earth-bound observer. For him, the
emitter moves between the time of emission and the time of return. Thus,
the photon does not follow a straight up-and-down path to the mirror, but a
longer path:
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What the Earth observer sees
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For the Earth-bound observer, the photon follows the longer path, going
s distance from the emiter to the mirror and then returning the same distance
to the reeiver at its new position.

Since the photon must follow a longer path, it will take more time, so
the Earth-bound observer will have a longer measure of elapsed time, δt that
the astronaut. This is consistent with the prediction of the Lorentz equation.
But we can actually deduce the precise Lorentz equation in this case using
Euclidian geometry!

The Earth-bound observer sees δt as the durataion between emission and
reciept. How far does the reciever move during this time? Well, if the orbital
velocity of the astronaut’s frame is v, then our old friend distance equals rate
times time gives us

L = vδt.

Because of equation (1) above, we know that

D = c
∆τ

2
.

Filling this information into our picture above, we get
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Now look at the right triangle on the left side of the diagram.
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We know from the Pythagoran Thereom that

(

v
δt

2

)2

+

(

c
∆τ

2

)2

= s2. (2)

The light beam takes δt to make its trip along the two arrows, so the trip from
the start position to the mirror takes half that time. Using distance equals
rate times time again, we get

s = c
δt

2

Substitute this into equation (2) above:

(

v
δt

2

)2

+

(

c
∆τ

2

)2

=

(

c
δt

2

)2

.

Now gather terms:

(

c
∆τ

2

)2

=

(

c
δt

2

)2

−

(

v
δt

2

)2

=

(

δt

2

)2

(c2 − v2)

Now solve for δt:
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δt = 2

√

(

c∆τ

2

)2

(c2 − v2)

factor out (∆τ/2)2

= 2
∆τ

2

√

c2

c2 − v2)

divide numerator and denominator by c2

= ∆τ

√

1

1− v2

c2

= γ∆τ

which is exactly the Lorentz equation.
The only premise we made in the above is that the speed of light is the

same in all frames. We can’t know, but it seems likely Einstein must have done
a similar thought experiment that led him to the theory of special relativity.
It’s pretty remarkable that a special case of a deep result like the Lorentz
equation follows from Euclidian geomtry and the premise that the speed of
light is the same in all frames.
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