![]() | No ratings.
How can I find a set of four integers such that the sum of any two is a square? |
How can I find a set of four integers such that the sum of any two is a square. Choose 6 integers, t1, t2, t3, s1, s2, s3. Define a1 = real part of ((t1+s1+1) + i(t1-s1)) ((t2+s2+1) + i(t2-s2)) ((t3+s3+1) + i(t3-s3)) a2 = imaginary part of ((t1+s1+1) + i(t1-s1)) ((t2+s2+1) + i(t2-s2)) ((t3+s3+1) + i(t3-s3)) a3 = real part of ((t1+s1+1) + i(t1-s1)) ((t2+s2+1) + i(t2-s2)) ((t3+s3+1) - i(t3-s3)) a4 = imaginary part of ((t1+s1+1) + i(t1-s1)) ((t2+s2+1) + i(t2-s2)) ((t3+s3+1) - i(t3-s3)) a5 = real part of ((t1+s1+1) + i(t1-s1)) ((t2+s2+1) - i(t2-s2)) ((t3+s3+1) + i(t3-s3)) a6 = imaginary part of ((t1+s1+1) + i(t1-s1)) ((t2+s2+1) - i(t2-s2)) ((t3+s3+1) + i(t3-s3)) Define either, p1 = (a1**2 + a3**2 - a6**2)/2 p2 = (a1**2 + a6**2 - a3**2)/2 p3 = (a3**2 + a6**2 - a1**2)/2 p4 = (a5**2 + a4**2 - a1**2)/2 or p1 = (a1**2 + a3**2 - a5**2)/2 p2 = (a1**2 + a5**2 - a3**2)/2 p3 = (a3**2 + a5**2 - a1**2)/2 p4 = (a6**2 + a4**2 - a1**2)/2 according to which will make p1, p2, p3, p4 to be integers. p1 + p2 = a1**2 p1 + p3 = a3**2 p1 + p4 = a5**2 p2 + p3 = a6**2 p2 + p4 = a4**2 p3 + p4 = a2**2 or p1 + p2 = a1**2 p1 + p3 = a3**2 p1 + p4 = a6**2 p2 + p3 = a5**2 p2 + p4 = a4**2 p3 + p4 = a2**2 Numerical Example Choose t1 = 2, t2 = 3, t3 = 5, s1=1, s2=1, s3=1 (4+i) (5+2i) (7+4i) = ((4+i) (5+2i)) (7+4i) = (18+13i) (7+4i) = (74+163i) a1 = 74 a2 = 163 (4+i) (5+2i) (7-4i) = ((4+i) (5+2i)) (7-4i) = (18+13i) (7-4i) = (178+19i) a3 = 178 a4 = 19 (4+i) (5-2i) (7+4i) = ((4+i) (5-2i)) (7+4i) = (22-3i) (7+4i) = (166+67i) a5 = 166 a6 = 67 a1**2 = 74**2 = 5476 a2**2 = 163**2 = 26569 a3**2 = 178**2 = 31684 a4**2 = 19**2 = 361 a5**2 = 166**2 = 27556 a6**2 = 67**2 = 4489 p1 = (a1**2 + a3**2 - a5**2)/2 p1 = (5476 + 31684 - 27556)/2 p1 = 4802 p2 = (a1**2 + a5**2 - a3**2)/2 p2 = (5476 + 27556 - 31684)/2 p2 = 674 p3 = (a3**2 + a5**2 - a1**2)/2 p3 = (31684 + 27556 - 5476)/2 p3 = 26882 p4 = (a6**2 + a4**2 - a1**2)/2 p4 = (4489 + 361 - 5476 )/2 p4 = -313 p1 + p2 = 5476 = 74**2 p1 + p3 = 31684 = 178**2 p1 + p4 = 4489 = 67**2 p2 + p3 = 27556 = 166**2 p2 + p4 = 361 = 19**2 p3 + p4 = 26569 = 163**2 |